Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Mol Brain ; 17(1): 18, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605409

RESUMO

One of the main burdens in the treatment of diseases is imputable to the delay between the appearance of molecular dysfunctions in the first affected disease cells and their presence in sufficient number for detection in specific tissues or organs. This delay obviously plays in favor of disease progression to an extent that makes efficient treatments difficult, as they arrive too late. The development of a novel medical strategy, termed cell-based interception and precision medicine, seeks to identify dysfunctional cells early, when tissue damages are not apparent and symptoms not yet present, and develop therapies to treat diseases early. Central to this strategy is the use of single-cell technologies that allow detection of molecular changes in cells at the time of phenotypical bifurcation from health to disease. In this article we describe a general procedure to support such an approach applied to neurodegenerative disorders. This procedure combines four components directed towards highly complementary objectives: 1) a high-performance single-cell proteomics (SCP) method (Detect), 2) the development of disease experimental cell models and predictive computational models of cell trajectories (Understand), 3) the discovery of specific targets and personalized therapies (Cure), and 4) the creation of a community of collaborating laboratories to accelerate the development of this novel medical paradigm (Collaborate). A global initiative named 37TrillionCells (37TC) was launched to advance the development of cell-based interception and precision medicine.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/terapia , Medicina de Precisão/métodos , Atenção à Saúde , Proteômica/métodos
2.
Glia ; 72(6): 1165-1182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497409

RESUMO

Oligodendrocytes (OLs) are key players in the central nervous system, critical for the formation and maintenance of the myelin sheaths insulating axons, ensuring efficient neuronal communication. In the last decade, the use of human induced pluripotent stem cells (iPSCs) has become essential for recapitulating and understanding the differentiation and role of OLs in vitro. Current methods include overexpression of transcription factors for rapid OL generation, neglecting the complexity of OL lineage development. Alternatively, growth factor-based protocols offer physiological relevance but struggle with efficiency and cell heterogeneity. To address these issues, we created a novel SOX10-P2A-mOrange iPSC reporter line to track and purify oligodendrocyte precursor cells. Using this reporter cell line, we analyzed an existing differentiation protocol and shed light on the origin of glial cell heterogeneity. Additionally, we have modified the differentiation protocol, toward enhancing reproducibility, efficiency, and terminal maturity. Our approach not only advances OL biology but also holds promise to accelerate research and translational work with iPSC-derived OLs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem da Célula , Reprodutibilidade dos Testes , Neurogênese , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
3.
Eur J Paediatr Neurol ; 49: 141-154, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38554683

RESUMO

INTRODUCTION: Metachromatic leukodystrophy (MLD) is a rare autosomal recessive lysosomal storage disorder resulting from arylsulfatase A enzyme deficiency, leading to toxic sulfatide accumulation. As a result affected individuals exhibit progressive neurodegeneration. Treatments such as hematopoietic stem cell transplantation (HSCT) and gene therapy are effective when administered pre-symptomatically. Newborn screening (NBS) for MLD has recently been shown to be technically feasible and is indicated because of available treatment options. However, there is a lack of guidance on how to monitor and manage identified cases. This study aims to establish consensus among international experts in MLD and patient advocates on clinical management for NBS-identified MLD cases. METHODS: A real-time Delphi procedure using eDELPHI software with 22 experts in MLD was performed. Questions, based on a literature review and workshops, were answered during a seven-week period. Three levels of consensus were defined: A) 100%, B) 75-99%, and C) 50-74% or >75% but >25% neutral votes. Recommendations were categorized by agreement level, from strongly recommended to suggested. Patient advocates participated in discussions and were involved in the final consensus. RESULTS: The study presents 57 statements guiding clinical management of NBS-identified MLD patients. Key recommendations include timely communication by MLD experts with identified families, treating early-onset MLD with gene therapy and late-onset MLD with HSCT, as well as pre-treatment monitoring schemes. Specific knowledge gaps were identified, urging prioritized research for future evidence-based guidelines. DISCUSSION: Consensus-based recommendations for NBS in MLD will enhance harmonized management and facilitate integration in national screening programs. Structured data collection and monitoring of screening programs are crucial for evidence generation and future guideline development. Involving patient representatives in the development of recommendations seems essential for NBS programs.

5.
Front Neurol ; 14: 1254140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915380

RESUMO

RNA polymerase III-related leukodystrophy (POLR3-related leukodystrophy) is a rare, genetically determined hypomyelinating disease arising from biallelic pathogenic variants in genes encoding subunits of RNA polymerase III (Pol III). Here, we describe the first reported case of POLR3-related leukodystrophy caused by biallelic pathogenic variants in POLR3D, encoding the RPC4 subunit of Pol III. The individual, a female, demonstrated delays in walking and expressive and receptive language as a child and later cognitively plateaued. Additional neurological features included cerebellar signs (e.g., dysarthria, ataxia, and intention tremor) and dysphagia, while non-neurological features included hypodontia, hypogonadotropic hypogonadism, and dysmorphic facial features. Her MRI was notable for diffuse hypomyelination with myelin preservation of early myelinating structures, characteristic of POLR3-related leukodystrophy. Exome sequencing revealed the biallelic variants in POLR3D, a missense variant (c.541C > T, p.P181S) and an intronic splice site variant (c.656-6G > A, p.?). Functional studies of the patient's fibroblasts demonstrated significantly decreased RNA-level expression of POLR3D, along with reduced expression of other Pol III subunit genes. Notably, Pol III transcription was also shown to be aberrant, with a significant decrease in 7SK RNA and several distinct tRNA genes analyzed. Affinity purification coupled to mass spectrometry of the POLR3D p.P181S variant showed normal assembly of Pol III subunits yet altered interaction of Pol III with the PAQosome chaperone complex, indicating the missense variant is likely to alter complex maturation. This work identifies biallelic pathogenic variants in POLR3D as a novel genetic cause of POLR3-related leukodystrophy, expanding the molecular spectrum associated with this disease, and proposes altered tRNA homeostasis as a factor in the underlying biology of this hypomyelinating disorder.

6.
Pediatr Neurol ; 148: 133-137, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37713976

RESUMO

BACKGROUND: Biallelic pathogenic variants in SLC17A5 cause three forms of free sialic acid storage disease categorized based on severity from least to most severe: Salla disease, intermediate-severe Salla disease, and infantile free sialic acid storage disease. Intermediate-severe Salla disease is the most recently described form. Here, we report a longitudinal characterization of intermediate-severe Salla disease progression in two sisters carrying the following biallelic variants in SLC17A5: c.406A>G (p.Lys136Glu) and c.819+1G>A. METHODS: A retrospective review of medical records was performed. A developmental questionnaire was completed to obtain further clinical information. For functional characterization of the predicted splice site variant, RNA was extracted from patient blood samples and sequenced. RESULTS: Disease onset occurred within the first six months of life in both patients. Early childhood development was delayed with achievement of some milestones followed by a developmental plateau in late childhood. After this, both patients began a slow and progressive neurological regression in adolescence. Functional studies confirmed the pathogenicity of the c.819+1G>A variant, resulting in a frameshift and deletion of exon 6. CONCLUSIONS: We present a detailed study describing the clinical course of intermediate-severe Salla disease with over 15 to 20 years of evolution and demonstrate the pathogenicity of the c.819+1G>A splice site variant.


Assuntos
Doença do Armazenamento de Ácido Siálico , Adolescente , Humanos , Criança , Pré-Escolar , Doença do Armazenamento de Ácido Siálico/genética , Mutação/genética , Ácido N-Acetilneuramínico , Progressão da Doença
7.
BMC Neurol ; 23(1): 305, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592248

RESUMO

BACKGROUND: The leukodystrophy "Vanishing White Matter" (VWM) is an orphan disease with neurological decline and high mortality. Currently, VWM has no approved treatments, but advances in understanding pathophysiology have led to identification of promising therapies. Several investigational medicinal products are either in or about to enter clinical trial phase. Clinical trials in VWM pose serious challenges, as VWM has an episodic disease course; disease phenotype is highly heterogeneous and predictable only for early onset; and study power is limited by the small patient numbers. To address these challenges and accelerate therapy delivery, the VWM Consortium, a group of academic clinicians with expertise in VWM, decided to develop a core protocol to function as a template for trials, to improve trial design and facilitate sharing of control data, while permitting flexibility regarding other trial details. Overall aims of the core protocol are to collect safety, tolerability, and efficacy data for treatment assessment and marketing authorization. METHODS: To develop the core protocol, the VWM Consortium designated a committee, including clinician members of the VWM Consortium, family and patient group advocates, and experts in statistics, clinical trial design and alliancing with industries. We drafted three age-specific protocols, to stratify into more homogeneous patient groups, of ages ≥ 18 years, ≥ 6 to < 18 years and < 6 years. We chose double-blind, randomized, placebo-controlled design for patients aged ≥ 6 years; and open-label non-randomized natural-history-controlled design for patients < 6 years. The protocol describes study populations, age-specific endpoints, inclusion and exclusion criteria, study schedules, sample size determinations, and statistical considerations. DISCUSSION: The core protocol provides a shared uniformity across trials, enables a pool of shared controls, and reduces the total number of patients necessary per trial, limiting the number of patients on placebo. All VWM clinical trials are suggested to adhere to the core protocol. Other trial components such as choice of primary outcome, pharmacokinetics, pharmacodynamics, and biomarkers are flexible and unconstrained by the core protocol. Each sponsor is responsible for their trial execution, while the control data are handled by a shared research organization. This core protocol benefits the efficiency of parallel and consecutive trials in VWM, and we hope accelerates time to availability of treatments for VWM. TRIAL REGISTRATION: NA. From a scientific and ethical perspective, it is strongly recommended that all interventional trials using this core protocol are registered in a clinical trial register.


Assuntos
Doenças Desmielinizantes , Doenças Neurodegenerativas , Substância Branca , Humanos , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Consenso , Defesa do Paciente , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Tamanho da Amostra , Pré-Escolar , Criança , Adolescente , Adulto
8.
Front Cell Neurosci ; 17: 1216487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601282

RESUMO

COA8-related leukoencephalopathy is a recently described rare cavitating leukoencephalopathy caused by biallelic variants in the COA8 gene. Clinically, it presents heterogeneously and usually follows a bi-phasic clinical course with a period of acute onset and regression, followed by stabilization, and in some cases, even subtle improvement. We present a 4-year-old boy with a homozygous 2.5 kilobase pair deletion in the COA8 gene following a severe neurological deterioration resulting in death weeks after onset. Brain MRI revealed a distinctive pattern of cavitating leukodystrophy predominantly involving the posterior cerebral white matter which improved upon a follow-up MRI a month later. Brain pathology displayed overall white matter destruction with gliosis and infiltration by macrophages. There was preservation of astrocytes around blood vessels and axons around the zones of demyelination. This study is the first neuropathological examination of COA8-related leukoencephalopathy and provides further characterization of the clinical and MRI phenotype.

9.
Brain ; 146(12): 5070-5085, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37635302

RESUMO

RNA polymerase III (Pol III)-related hypomyelinating leukodystrophy (POLR3-HLD), also known as 4H leukodystrophy, is a severe neurodegenerative disease characterized by the cardinal features of hypomyelination, hypodontia and hypogonadotropic hypogonadism. POLR3-HLD is caused by biallelic pathogenic variants in genes encoding Pol III subunits. While approximately half of all patients carry mutations in POLR3B encoding the RNA polymerase III subunit B, there is no in vivo model of leukodystrophy based on mutation of this Pol III subunit. Here, we determined the impact of POLR3BΔ10 (Δ10) on Pol III in human cells and developed and characterized an inducible/conditional mouse model of leukodystrophy using the orthologous Δ10 mutation in mice. The molecular mechanism of Pol III dysfunction was determined in human cells by affinity purification-mass spectrometry and western blot. Postnatal induction with tamoxifen induced expression of the orthologous Δ10 hypomorph in triple transgenic Pdgfrα-Cre/ERT; R26-Stopfl-EYFP; Polr3bfl mice. CNS and non-CNS features were characterized using a variety of techniques including microCT, ex vivo MRI, immunofluorescence, immunohistochemistry, spectral confocal reflectance microscopy and western blot. Lineage tracing and time series analysis of oligodendrocyte subpopulation dynamics based on co-labelling with lineage-specific and/or proliferation markers were performed. Proteomics suggested that Δ10 causes a Pol III assembly defect, while western blots demonstrated reduced POLR3BΔ10 expression in the cytoplasm and nucleus in human cells. In mice, postnatal Pdgfrα-dependent expression of the orthologous murine mutant protein resulted in recessive phenotypes including severe hypomyelination leading to ataxia, tremor, seizures and limited survival, as well as hypodontia and craniofacial abnormalities. Hypomyelination was confirmed and characterized using classic methods to quantify myelin components such as myelin basic protein and lipids, results which agreed with those produced using modern methods to quantify myelin based on the physical properties of myelin membranes. Lineage tracing uncovered the underlying mechanism for the hypomyelinating phenotype: defective oligodendrocyte precursor proliferation and differentiation resulted in a failure to produce an adequate number of mature oligodendrocytes during postnatal myelinogenesis. In summary, we characterized the Polr3bΔ10 mutation and developed an animal model that recapitulates features of POLR3-HLD caused by POLR3B mutations, shedding light on disease pathogenesis, and opening the door to the development of therapeutic interventions.


Assuntos
Anodontia , Anormalidades Craniofaciais , Doenças Desmielinizantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doenças Neurodegenerativas , Humanos , Animais , Camundongos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Mutação/genética
10.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609196

RESUMO

The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.

11.
Orphanet J Rare Dis ; 18(1): 187, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443037

RESUMO

BACKGROUND: Neurodegeneration due to cerebral folate transport deficiency is a rare autosomal recessive disorder caused by biallelic pathogenic variants in FOLR1. Onset typically occurs in late infancy and is characterized by psychomotor regression, epilepsy, and a hypomyelinating leukodystrophy on magnetic resonance imaging. If left untreated, progressive neurodegeneration occurs. However, early treatment with folinic acid has been shown to stabilize or reverse neurological features. Approximately thirty patients have been described worldwide. Here, we report the first two cases with genetically proven cerebral folate transport deficiency from South-Eastern Europe, describe the effect of oral folinic acid therapy on clinical and neuroradiological features and review the literature. RESULTS: Two siblings presented in childhood with clinical and radiological findings consistent with a hypomyelinating leukodystrophy. Exome sequencing revealed a novel homozygous pathogenic variant in FOLR1 (c.465_466delinsTG; p.W156G), confirming the diagnosis of neurodegeneration due to cerebral folate transport deficiency. Folinic acid treatment was promptly initiated in both patients. The younger sibling was treated early in disease course at 2 years of age, and demonstrated complete recovery in clinical and MRI features. The older sibling, who was 8 years of age at the time of diagnosis and treatment, demonstrated partial but substantial improvements. CONCLUSION: We present the first account in the literature that early treatment initiation with oral folinic acid alone can result in complete neurological recovery of both clinical and radiological abnormalities in neurodegeneration due to cerebral folate deficiency. Moreover, through the report of these patients along with review of the literature, we provide information about the natural history of the disease with comparison of treatment effects at different stages of disease progression. This report also reinforces the importance of universal access to genetic testing to ensure prompt diagnoses for treatable disorders.


Assuntos
Epilepsia , Deficiência de Ácido Fólico , Distrofias Neuroaxonais , Humanos , Leucovorina/uso terapêutico , Deficiência de Ácido Fólico/diagnóstico , Deficiência de Ácido Fólico/tratamento farmacológico , Deficiência de Ácido Fólico/genética , Epilepsia/genética , Receptor 1 de Folato/genética , Receptor 1 de Folato/uso terapêutico
12.
J Child Neurol ; 38(8-9): 498-504, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461315

RESUMO

TUBB4A pathogenic variants are associated with a spectrum of neurologic impairments including movement disorders and leukodystrophy. With the development of targeted therapies, there is an urgent unmet need for validated tools to measure mobility impairment. Our aim is to explore gross motor function in a pediatric-onset TUBB4A-related leukodystrophy cohort with existing gross motor outcome tools. Gross Motor Function Measure-88 (GMFM-88), Gross Motor Function Classification System (GMFCS-ER), and Gross Motor Function Classification-Metachromatic Leukodystrophy (GMFC-MLD) were selected through face validity. Subjects with a confirmed clinical and molecular diagnosis of TUBB4A-related leukodystrophy were enrolled. Participants' sex, age, genotype, and age at disease onset were collected, together with GMFM-88 and concurrent GMFCS-ER and GMFC-MLD. Performances on each measure were compared. GMFM-88 floor effect was defined as total score below 20%. A total of 35 subjects participated. Median performance by GMFM-88 was 16.24% (range 0-97.31), with 42.9% (n = 15) of individuals performing above the floor. GMFM-88 Dimension A (Lying and Rolling) was the best-performing dimension in the GMFM-88 (n = 29 above the floor). All levels of the Classification Scales were represented, with the exception of the GMFC-MLD level 0. Evaluation by GMFM-88 was strongly correlated with the Classification Scales (Spearman correlations: GMFCS-ER:GMFM-88 r = 0.90; GMFC-MLD:GMFM-88 r = 0.88; GMFCS-ER:GMFC-MLD: r = 0.92). Despite overall observation of a floor effect, the GMFM-88 is able to accurately capture the performance of individuals with attenuated phenotypes. GMFM-88 Dimension A shows no floor effect. GMFC-MLD shows a strong correlation with GMFCS-ER and GMFM-88, supporting its use as an age-independent functional score in TUBB4A-related leukodystrophy.


Assuntos
Paralisia Cerebral , Leucodistrofia Metacromática , Transtornos dos Movimentos , Humanos , Leucodistrofia Metacromática/complicações , Transtornos dos Movimentos/complicações , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Destreza Motora , Tubulina (Proteína)/genética
13.
Child Neurol Open ; 10: 2329048X231176673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284702

RESUMO

De novo pathogenic variants in EIF2AK2 have recently been reported as a novel genetic cause of leukoencephalopathy. Here, we describe a male individual who presented in the first year of life with clinical features resembling Pelizaeus-Merzbacher disease (PMD), including nystagmus, hypotonia, and global developmental delay, and which later progressed to include ataxia and spasticity. Brain MRI at the age of two revealed diffuse hypomyelination. This report adds to the limited number of individuals published and further reinforces de novo variants in EIF2AK2 as a molecular cause of a leukodystrophy that clinically and radiologically resembles PMD.

14.
Front Neurosci ; 17: 1167047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179550

RESUMO

Introduction: RNA polymerase III (Pol III) is a critical enzymatic complex tasked with the transcription of ubiquitous non-coding RNAs including 5S rRNA and all tRNA genes. Despite the constitutive nature of this enzyme, hypomorphic biallelic pathogenic variants in genes encoding subunits of Pol III lead to tissue-specific features and cause a hypomyelinating leukodystrophy, characterized by a severe and permanent deficit in myelin. The pathophysiological mechanisms in POLR3- related leukodystrophy and specifically, how reduced Pol III function impacts oligodendrocyte development to account for the devastating hypomyelination seen in the disease, remain poorly understood. Methods: In this study, we characterize how reducing endogenous transcript levels of leukodystrophy-associated Pol III subunits affects oligodendrocyte maturation at the level of their migration, proliferation, differentiation, and myelination. Results: Our results show that decreasing Pol III expression altered the proliferation rate of oligodendrocyte precursor cells but had no impact on migration. Additionally, reducing Pol III activity impaired the differentiation of these precursor cells into mature oligodendrocytes, evident at both the level of OL-lineage marker expression and on morphological assessment, with Pol III knockdown cells displaying a drastically more immature branching complexity. Myelination was hindered in the Pol III knockdown cells, as determined in both organotypic shiverer slice cultures and co-cultures with nanofibers. Analysis of Pol III transcriptional activity revealed a decrease in the expression of distinct tRNAs, which was significant in the siPolr3a condition. Discussion: In turn, our findings provide insight into the role of Pol III in oligodendrocyte development and shed light on the pathophysiological mechanisms of hypomyelination in POLR3-related leukodystrophy.

15.
J Med Genet ; 60(10): 1026-1034, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37197783

RESUMO

BACKGROUND: RNA polymerase III-related or 4H leukodystrophy (POLR3-HLD) is an autosomal recessive hypomyelinating leukodystrophy characterized by neurological dysfunction, hypodontia and hypogonadotropic hypogonadism. The disease is caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C or POLR3K. Craniofacial abnormalities reminiscent of Treacher Collins syndrome have been originally described in patients with POLR3-HLD caused by biallelic pathogenic variants in POLR1C. To date, no published studies have appraised in detail the craniofacial features of patients with POLR3-HLD. In this work, the specific craniofacial characteristics of patients with POLR3-HLD associated with biallelic pathogenic variants in POLR3A, POLR3B and POLR1C are described. METHODS: The craniofacial features of 31 patients with POLR3-HLD were evaluated, and potential genotype-phenotype associations were evaluated. RESULTS: Various craniofacial abnormalities were recognized in this patient cohort, with each individual presenting at least one craniofacial abnormality. The most frequently identified features included a flat midface (61.3%), a smooth philtrum (58.0%) and a pointed chin (51.6%). In patients with POLR3B biallelic variants, a thin upper lip was frequent. Craniofacial anomalies involving the forehead were most commonly associated with biallelic variants in POLR3A and POLR3B while a higher proportion of patients with POLR1C biallelic variants demonstrated bitemporal narrowing. CONCLUSION: Through this study, we demonstrated that craniofacial abnormalities are common in patients with POLR3-HLD. This report describes in detail the dysmorphic features of POLR3-HLD associated with biallelic variants in POLR3A, POLR3B and POLR1C.


Assuntos
Doenças Desmielinizantes , Doenças Neurodegenerativas , Humanos , RNA Polimerase III/genética , Padrões de Herança , RNA Polimerases Dirigidas por DNA/genética
16.
J Child Neurol ; 38(5): 329-335, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37225698

RESUMO

Parents of children with genetically determined leukoencephalopathies play a major role in their children's health care. We sought to gain a better understanding of their experience with the public health care system in Quebec, Canada, to obtain suggestions for improving their services, and to identify modifiable factors to improve their quality of life. We conducted interviews with 13 parents. Data was analyzed thematically. Five themes were identified: challenges of the diagnostic odyssey, limited access to services, excessive parental responsibilities, positive relationships with health care professionals as a facilitator of care, and benefits of a specialized leukodystrophy clinic. Parents felt like waiting for the diagnosis was extremely stressful, and they expressed their need for transparency during this period. They identified multiple gaps and barriers in the health care system, which burdened them with many responsibilities. Parents emphasized the importance of a positive relationship with their child's health care professionals. They also felt grateful for being followed at a specialized clinic as it improved the quality of care received.


Assuntos
Pais , Qualidade de Vida , Criança , Humanos , Atenção à Saúde , Canadá , Quebeque
17.
Front Neurol ; 14: 1148377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077564

RESUMO

Introduction: Rare neurodevelopmental disorders, including inherited white matter disorders or leukodystrophies, often present a diagnostic challenge on a genetic level given the large number of causal genes associated with a range of disease subtypes. This study aims to demonstrate the challenges and lessons learned in the genetic investigations of leukodystrophies through presentation of a series of cases solved using exome or genome sequencing. Methods: Each of the six patients had a leukodystrophy associated with hypomyelination or delayed myelination on MRI, and inconclusive clinical diagnostic genetic testing results. We performed next generation sequencing (case-based exome or genome sequencing) to further investigate the genetic cause of disease. Results: Following different lines of investigation, molecular diagnoses were obtained for each case, with patients harboring pathogenic variants in a range of genes including TMEM106B, GJA1, AGA, POLR3A, and TUBB4A. We describe the lessons learned in reaching the genetic diagnosis, including the importance of (a) utilizing proper multi-gene panels in clinical testing, (b) assessing the reliability of biochemical assays in supporting diagnoses, and (c) understanding the limitations of exome sequencing methods in regard to CNV detection and region coverage in GC-rich areas. Discussion: This study illustrates the importance of applying a collaborative diagnostic approach by combining detailed phenotyping data and metabolic results from the clinical environment with advanced next generation sequencing analysis techniques from the research environment to increase the diagnostic yield in patients with genetically unresolved leukodystrophies.

18.
Pediatr Neurol ; 141: 79-86, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791574

RESUMO

BACKGROUND: Cockayne syndrome (CS) is a DNA repair disorder primarily associated with pathogenic variants in ERCC6 and ERCC8. As in other Mendelian disorders, there are a number of genetically unsolved CS cases. METHODS: We ascertained five individuals with monoallelic pathogenic variants in MORC2, previously associated with three dominantly inherited phenotypes: an axonal form of Charcot-Marie-Tooth disease type 2Z; a syndrome of developmental delay, impaired growth, dysmorphic facies, and axonal neuropathy; and a rare form of spinal muscular atrophy. RESULTS: One of these individuals bore a strong phenotypic resemblance to CS. We then identified monoallelic pathogenic MORC2 variants in three of five genetically unsolved individuals with a clinical diagnosis of CS. In total, we identified eight individuals with MORC2-related disorder, four of whom had clinical features strongly suggestive of CS. CONCLUSIONS: Our findings indicate that some forms of MORC2-related disorder have phenotypic similarities to CS, including features of accelerated aging. Unlike classic DNA repair disorders, MORC2-related disorder does not appear to be associated with a defect in transcription-coupled nucleotide excision repair and follows a dominant pattern of inheritance with variants typically arising de novo. Such de novo pathogenic variants present particular challenges with regard to both initial gene discovery and diagnostic evaluations. MORC2 should be included in diagnostic genetic test panels targeting the evaluation of microcephaly and/or suspected DNA repair disorders. Future studies of MORC2 and its protein product, coupled with further phenotypic characterization, will help to optimize the diagnosis, understanding, and therapy of the associated disorders.


Assuntos
Síndrome de Cockayne , Microcefalia , Humanos , Síndrome de Cockayne/genética , Enzimas Reparadoras do DNA/genética , Fenótipo , Microcefalia/genética , Mutação/genética , Fatores de Transcrição/genética
19.
MethodsX ; 10: 102051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814689

RESUMO

Immunopanning is an efficient and reliable method for isolating primary cells from rodent brain tissue, making it a valuable tool for researchers interested in in vitro glial models. Here, we present an immunopanning protocol optimized for the isolation of Platelet-Derived Growth Factor Receptor Alpha positive (PDGFRα+) oligodendrocyte precursor cells (OPCs) from mouse brain tissue that results in a high yield of pure OPCs from minimal quantities of starting tissue.•The protocol presented here is optimized for a PDGFRα-dependent selection of mouse OPCs using a commercial antibody, accounting for the relatively weaker adhesion of OPCs to the anti-PDGFRα plate as compared to other oligodendrocyte lineage markers (e.g., MOG).•A modified papain digestion step, with 95% O2/5% CO2 gas that is humidified prior to perfusion, significantly enhances the yield of dissociated cells and final yield of OPCs.•Isolating OPCs at the PDGFRα+ stage permits the expansion of cells in culture, facilitating studies using transgenic mice, and enables studies on the development of the oligodendrocyte lineage without the spatial and temporal complexity of in vivo studies.

20.
Semin Cell Dev Biol ; 136: 49-63, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35422389

RESUMO

Ribosomes are macromolecular machines that are globally required for the translation of all proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and mechanisms underpinning their tissue-specific phenotypes.


Assuntos
Doenças Neurodegenerativas , RNA Polimerase I , Humanos , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Doenças Neurodegenerativas/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Ribossomos/metabolismo , Ciclo Celular , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...